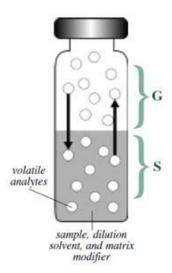
A Fix Was Found and a New Published Method is Emerging

August 10, 2020

Rock J. Vitale, CEAC

The Problem

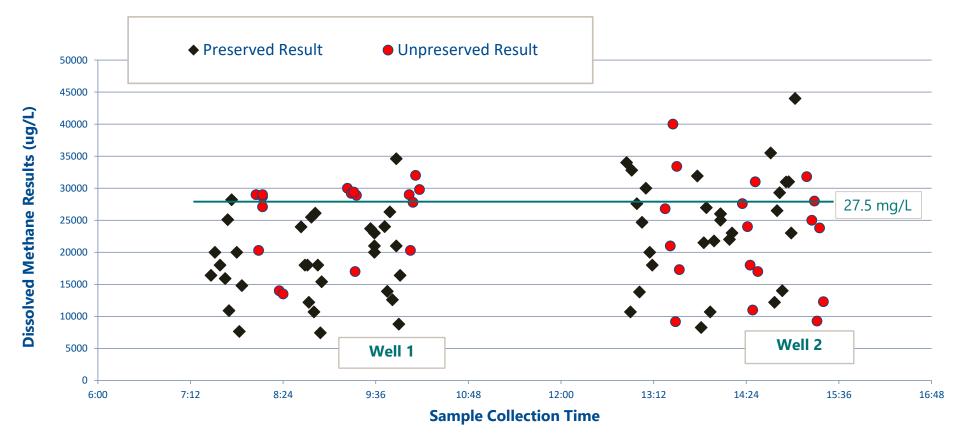

- Public concern of residential well contamination
- Accreditation being issued without:
 - A US EPA (or consensus) method for dissolved light gases
 - A PT/CRM to ground laboratories to a true value
- Significant data variability observed by MSC members across samples and accredited commercial laboratories
- A total lack of standardization

MSC Dissolved Methane Method Workgroup

- Formed to study this issue in early 2013.
- Phase 1 Study Completed early 2015.
 - Two groundwater samples across 15 laboratories including one government laboratory.
- Phase 2 Study Completed October 2016.
 - Four blind reference standards across 15 laboratories including one government laboratory.
- Phase 3 Study Completed January 2018.
 - Announced reference standard across eight non-reference (previously low) laboratories and three reference laboratories
- Phases 4 and 5 Study Initiated 2019.
 - Draft new method for Publish US EPA and/or ASTM.
 - Inter-laboratory validation of the new written method.

P1 - P5 Study Sponsors, Executor, and Participants

- Select Members of the MSC Dissolved Methane Method Work Group
- Environmental Standards, Inc. (Environmental Standards)
- 23 Participating Laboratories across all phases
- Environmental Services Laboratories (ESL), Indiana, Pennsylvania
- LGC Standards, Manchester, New Hampshire

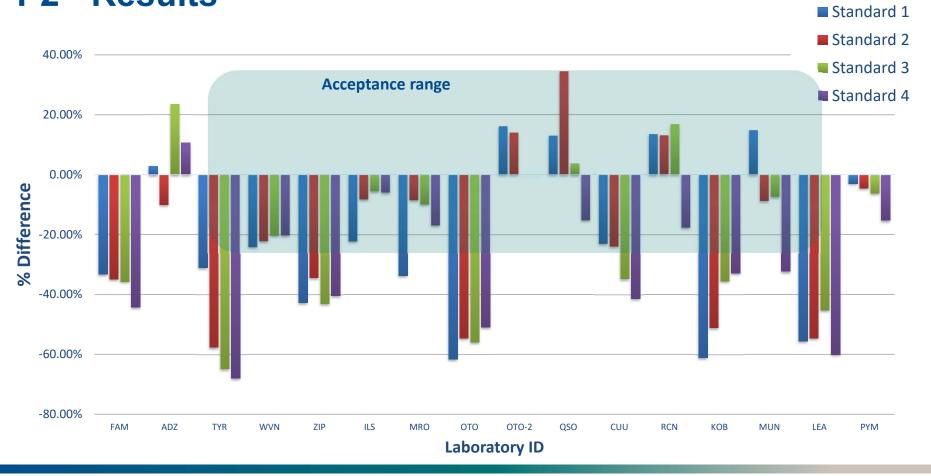


Phase 1 (P1) Design

- Infer issues that impact precision and bias.
 - Detailed questionnaires and review of laboratory SOPs.
- Inter-laboratory study of two monitoring wells.
 - Groundwater wells known to be impacted with dissolved methane.
 - In fact, both groundwater samples were saturated.
- Evaluate sampling and analytical precision and bias.
 - Three samples per well, three vials per sample, analyzed within 48 hours.
 - Vials were numbered and split across sampling so that each laboratory received vials across the multi-hour sampling period.
- Evaluate impact of preservation.
 - Both acid-preserved and unpreserved vials were submitted based on laboratory SOP (10 preserved, 5 unpreserved).

P1 - Conclusions

- Significant data variability across laboratories.
- No singular issue identified to explain spread and bias.
- Calibration varied, three general approaches.
 - Direct gas injection, Henry's Law (RSK-175)
 - Saturated aqueous solution (PA DEP 3685 and ASTM WK43267)
 - Inject gas standard into headspace above aqueous phase, establish equilibrium, then direct-inject gas phase.
- Propensity for dilution, especially at high concentrations.
- Sample preservation not an apparent factor.
- Additional testing at lower range of concentrations needed.



P2 - Design

- Provide blind reference standards (unpreserved) across concentration range and numbered each vial in order.
 - 270 μg/L; 1,080 μg/L; 2,700 μg/L; 7,015 μg/L
- Evaluate 4 different concentrations to allow for individual recovery and response model evaluation.
- Each laboratory received three vials at each of the four concentrations. Directed to report triplicate at each level.
- Controlled dilution effect by including at least one standard below calibration upper limit, to be analyzed undiluted.

P2 - Results

P2 - Conclusions & Recommendations

- Laboratory variability continues showing a predominantly low bias.
- Standards vs. sample handling identified as the primary factor affecting bias.
 - The individual steps in the sample/standard preparation processes results in the bias.
 - Sample and standard preparation differs.
 - Equilibrium must be reached.
 - Temperature control is critical.
- Recommended Phase 3 allowing for self diagnosis for the low-recovery laboratories.

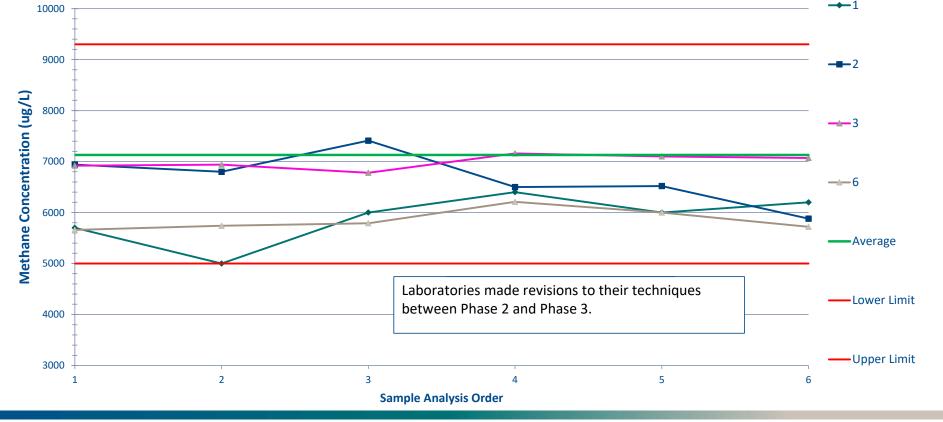
P3 - Study Participants

- Select members of the MSC Dissolved Methane Method Work Group.
- Environmental Standards, Valley Forge, PA.
- ESL, Indiana, PA. Reference standard provider.
- 8 Non-Reference Commercial Laboratories
 - Selected from those that failed Phase 1 or 2, more than a 30% difference (*e.g.*, < 70% recovery).
- 3 Reference Laboratories.

P3 – Design

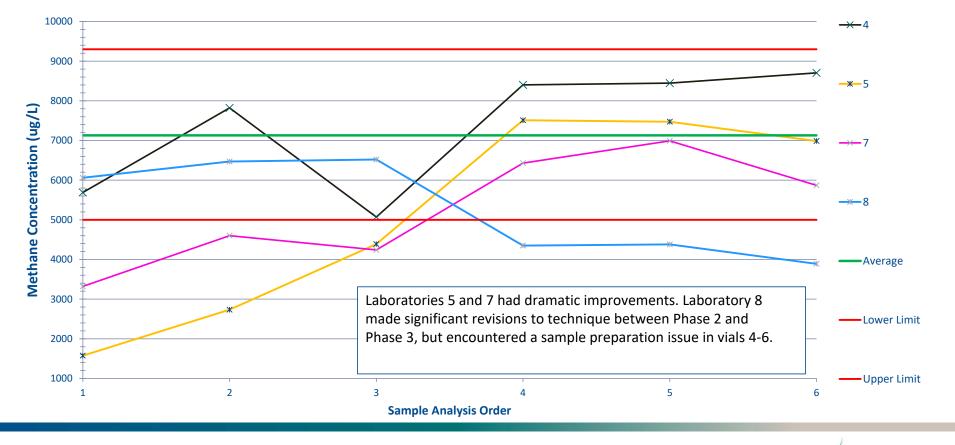
- Send Laboratories a known concentration reference standard.
 - Prepare approximately 70 vials, all at a single final concentration *circa* 7,000 µg/L.
 - Request laboratories analyze vials sequentially and review against known concentration.
 - Self-diagnose after each analysis, revise preparation, handling, calibration, and analysis techniques, as needed.
 - Use what is learned to optimize a procedure/method.

P3 Reference Standard As-Made Concentration

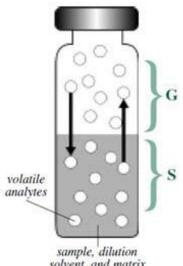

Reference Laboratory 1 (μg/L)	Reference Laboratory 2 (μg/L)	Reference Laboratory 3 (µg/L)
6600	7560	7880
7000	7190	7440
6500	6490	7490
7100	7465	6820

Average	6800	7176	7408
%RSD	4.3%	6.7%	5.9%
Duplicate Apolysis PBD	0.00/	1 4 9/	0.7%
Duplicate Analysis RPD	8.8%	14%	0.7%

Average of Reference Laboratories		7130
	%RSD of Reference Laboratories	6.4%



P3 Non-Reference Laboratories – Within Criteria


P3 Non-Reference Laboratories – Self Diagnosed, Some Dramatic Improvements

15

The Self Diagnosis Modifications – Success!

- Critical techniques were identified that caused the bias.
 - Handling calibration standards and samples the same.
 - Performing dilutions at refrigerator temperature.
 - Increasing sample warmup plus extending vortex or shaking times to ensure equilibrium.
 - Sample transfer eliminating the bubbles!
 - Keeping sample pressure consistent.
 - Minimizing septa piercing as much as possible.
 - These details were critical to optimize the P4 procedures.
- Participating laboratories achieved recoveries with 70-130% of reference laboratories' average value.
 - Of equal importance, was the significant reduction in variability.

sample, dilution solvent, and matrix modifier

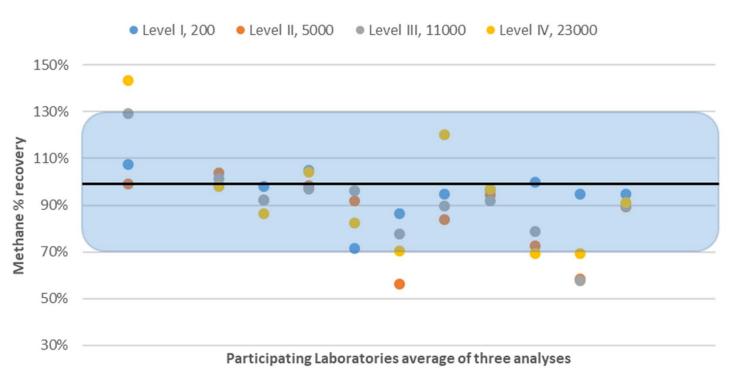
P4 and P5 - Design

- Peer review new written procedure based on P1-P3 findings
 - Written by Environmental Standards, includes three calibration approaches, but controls sample and standard handling to minimize the potential for variability and bias.
 - Reviewed by participating laboratories, regulatory agencies, and MSC Dissolved Methane Group.
 - Final draft procedure for P5 study in ASTM/US EPA method format.
- Submit dissolved methane standards to participating laboratories.
 - Mimic a large range of groundwater concentrations.
 - Laboratories analyze dissolved methane according to P4 procedure.

P4 – A Written Method From All the Lessons Learned

- Static headspace
- Three calibration options using GC and FID, TCD, or MS detector
 - Direct-gas injection
 - Saturated aqueous standards
 - Prepare in vial with headspace (predominant)
- Equilibration time and steps prescriptive
- QC
 - Optional IS, ICAL using Ave. RF or RE/RSE for linear/quadratic, CCV every 10 samples, RT criteria
- CRM incorporated as accuracy assessment

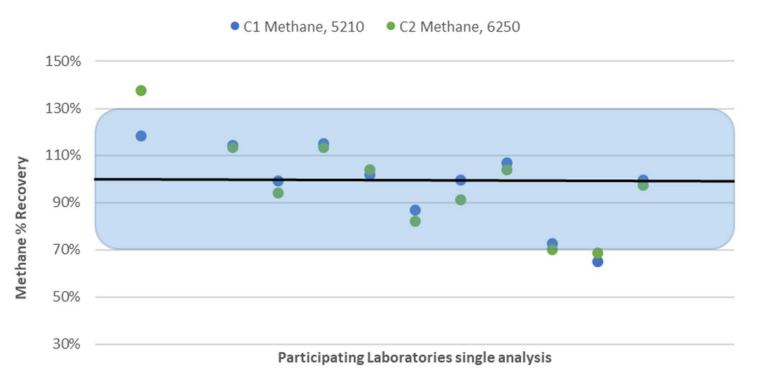
P5 – Study Participants


- Select members of the MSC Dissolved Methane Method Work Group.
- Environmental Standards, Valley Forge, PA.
- ESL, Indiana, PA. Reference standard provider.
- LGC Standards, Manchester, NH. Certified reference material (CRM) provider.
- 11 Commercial Laboratories.
- 1 State Agency Laboratory.

P5 – Results

- Range of concentrations: 200-23000 µg/L dissolved methane.
- Three laboratories were outliers.
- Dramatic improvement.

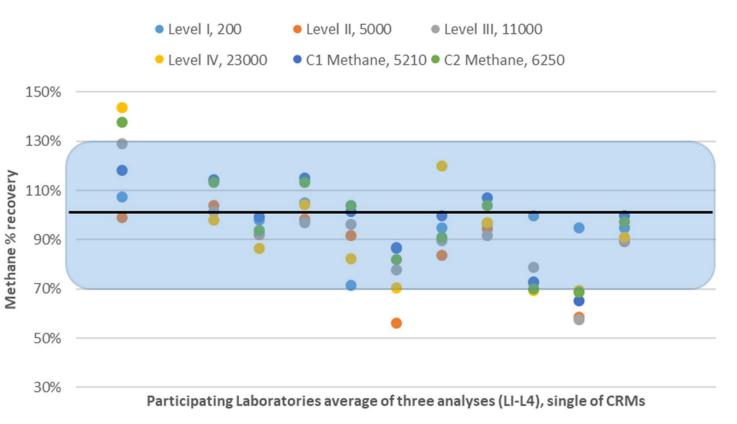
REFERENCE STANDARDS PERFORMANCE



P5 – Results

- CRM mid-range concentrations.
- Two laboratories were outliers.
 Same outliers as Reference Standards.

CERTIFIED REFERENCE MATERIAL PERFORMANCE



ANDARDS

P5 – Results

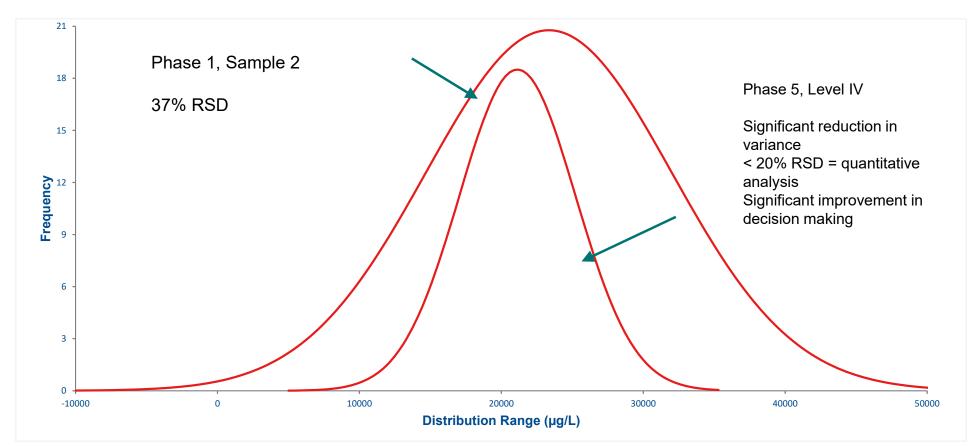
- Total of 167 data points.
- One laboratory high bias.
- Two laboratories low bias.
- Perform deep dive of outliers.

ALL AVAILABLE DATA

randar da

P1 to P5 - Summary

- Early phases confirmed significant bias across laboratory community.
- P3 provided self-diagnosis, captured techniques for P4 procedure used in P5 validation.
- P4 procedure also includes three options for calibration, this captures techniques across the laboratory community.
- CRM and reference standard results validate the P4 procedures used to formally write the method used in P5.
- The written method executed by the participating P5 laboratories successfully generated data of known P&A quality.



23

Improvement in Accuracy !!!

- Accuracy is assessed via comparison to a reference or consensus value.
 - No true references were available prior to CRM from LGC Standards.
 - Phases 1-3 prepared standard and, by default, defined this as consensus standard, but not rigorously determined (*e.g.*, ILS for consensus).
 - Phase 5 LGC CRM.
 - With the addition of the CRM, we now have a consensus standard to assess accuracy.

Improvement in Precision

25

What's Happening Now?

The Team is currently pursuing both the US EPA and ASTM to publish the new Light Gas Method.

Questions?

Rock J. Vitale, CEAC Technical Director of Chemistry/Principal rvitale@envstd.com

